Binding of γ-crystallin substrate prevents the binding of copper and zinc ions to the molecular chaperone α-crystallin.
نویسندگان
چکیده
α-Crystallin is a small heat shock protein and molecular chaperone. Binding of Cu2+ and Zn2+ ions to α-crystallin leads to enhanced chaperone function. Sequestration of Cu2+ by α-crystallin prevents metal-ion mediated oxidation. Here we show that binding of human γD-crystallin (HGD, a natural substrate) to human αA-crystallin (HAA) is inversely related to the binding of Cu2+/Zn2+ ions: The higher the amount of bound HGD, the lower the amount of bound metal ions. Thus, in the aging lens, depletion of free HAA will not only lower chaperone capacity but also lower Cu2+ sequestration, thereby promoting oxidation and cataract.
منابع مشابه
Molecular Mechanism of the Chaperone Function of Mini-α-Crystallin, a 19-Residue Peptide of Human α-Crystallin
α-Crystallin is the archetypical chaperone of the small heat-shock protein family, all members of which contain the so-called "α-crystallin domain" (ACD). This domain and the N- and C-terminal extensions are considered the main functional units in its chaperone function. Previous studies have shown that a 19-residue fragment of the ACD of human αA-crystallin called mini-αA-crystallin (MAC) show...
متن کاملα-crystallin modulates its chaperone activity by varying the exposed surface.
The α-crystallin family of small heat shock proteins possesses chaperone activity in response to stress and is involved in several neurological, muscular, and ophthalmic pathologies. This family includes the vertebrate lens protein α-crystallin, associated with cataract disease. In this study, by combining small-angle X-ray and light scattering techniques, the structure and shape of α-crystalli...
متن کاملCorrection: In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin
αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract forma...
متن کاملSynthesis and Characterization of a Peptide Identified as a Functional Element in aA-crystallin*
Eye lens a-crystallin is a member of the small heat shock protein (sHSP) family and forms large multimeric structures. Earlier studies have shown that it can act like a molecular chaperone and form a stable complex with partially unfolded proteins. We have observed that prior binding of the hydrophobic protein melittin to a-crystallin diminishes its chaperone-like activity toward denaturing alc...
متن کاملAssociation of partially folded lens βB2-crystallins with the α-crystallin molecular chaperone
Age-related cataract is a result of crystallins, the predominant lens proteins, forming light-scattering aggregates. In the low protein turnover environment of the eye lens, the crystallins are susceptible to modifications that can reduce stability, increasing the probability of unfolding and aggregation events occurring. It is hypothesized that the α-crystallin molecular chaperone system recog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 50 16 شماره
صفحات -
تاریخ انتشار 2011